Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Ola Hall

Ola Hall

Universitetslektor, prefekt

Porträtt av Ola Hall

Human bias and CNNs’ superior insights in satellite based poverty mapping

Författare

  • Hamid Sarmadi
  • Ibrahim Wahab
  • Ola Hall
  • Thorsteinn Rögnvaldsson
  • Mattias Ohlsson

Summary, in English

Satellite imagery is a potent tool for estimating human wealth and poverty, especially in regions lacking reliable data. This study compares a range of poverty estimation approaches from satellite images, spanning from expert-based to fully machine learning-based methodologies. Human experts ranked clusters from the Tanzania DHS survey using high-resolution satellite images. Then expert-defined features were utilized in a machine learning algorithm to estimate poverty. An explainability method was applied to assess the importance and interaction of these features in poverty prediction. Additionally, a convolutional neural network (CNN) was employed to estimate poverty from medium-resolution satellite images of the same locations. Our analysis indicates that increased human involvement in poverty estimation diminishes accuracy compared to machine learning involvement, exemplified with the case of Tanzania. Expert defined features exhibited significant overlap and poor interaction when used together in a classifier. Conversely, the CNN-based approach outperformed human experts, demonstrating superior predictive capability with medium-resolution images. These findings highlight the importance of leveraging machine learning explainability methods to identify predictive elements that may be overlooked by human experts. This study advocates for the integration of emerging technologies with traditional methodologies to optimize data collection and analysis of poverty and welfare.

Avdelning/ar

  • Institutionen för kulturgeografi och ekonomisk geografi
  • Centrum för miljö- och klimatvetenskap (CEC)
  • eSSENCE: The e-Science Collaboration
  • LU profilområde: Naturlig och artificiell kognition

Publiceringsår

2024-10-02

Språk

Engelska

Publikation/Tidskrift/Serie

Scientific Reports

Volym

14

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Social Sciences Interdisciplinary
  • Computer Vision and Robotics (Autonomous Systems)

Nyckelord

  • Convolutional neural networks
  • Domain experts
  • Explainable AI
  • Human bias
  • Satellite imagery
  • Tanzania
  • Welfare estimation

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 2045-2322